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Abstract
Bloch and Wannier functions of the Kohn type for a quite general one-
dimensional Hamiltonian with inversion symmetry are studied. Important
clarifications on null minigaps and the symmetry of those functions are given,
with emphasis on the Kronig–Penney model. The lack of a general selection
rule on the miniband index for optical transitions between edge states in
semiconductor superlattices is discussed. A direct method for the calculation
of Wannier–Kohn functions is presented.

1. Introduction

Bloch functions (BFs) and Wannier functions (WFs) play a central role in solid state physics,
and their properties have been studied in some detail [1–3]. While BFs describe extended
electron stationary states, WFs represent localized states obtained by a unitary transformation
of BFs. The growing interest in WFs is due to their application in order-N methods for
electronic structure calculations and spontaneous polarization studies [4], for example. At
the same time, the realization of semiconductor superlattices (SLs) has impelled the study of
electron states in one-dimensional (1D) crystals [5]. Localized states such as Wannier–Stark
and Landau states, electron–photon and electron–phonon processes may be described in terms
of WFs in SLs [6]. However, some misunderstandings regarding the symmetry of miniband-
edge BFs, null minigaps (NMGs) and the calculation of exponentially localized WFs are found
in the recent literature [7–9]. Therefore, further analysis is needed for a better description of
optical properties in SLs, for instance [10].

For the j th miniband (MB) of a 1D crystal of period τ in the x-axis, the BF ψ j,k(x) of
wavenumber k (with −π/τ < k � π/τ ) satisfies ψ j,k(x + τ ) = exp(ikτ )ψ j,k(x), and the WF
of the nth site is obtained as w j,n(x) = w j(x − nτ ), with

w j (x) =
√
τ

2π

∫ π/τ

−π/τ
ψ j,k(x) dk. (1)
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As BFs are determined up to a k-dependent phase factor, equation (1) shows clearly thatw j(x)
is not unique. For a simple MB of a system with an inversion centre at x = 0, Kohn [2] has
shown that BFs may be chosen to give a real, even or odd about either x = 0 or τ/2, and
exponentially localized w j (x). Such a function and its periodic images w j(x − nτ ) are the
Wannier–Kohn functions (WKFs) [11], and the corresponding BFs are called as Bloch–Kohn
functions (BKFs). Moreover, four MB classes are considered [2, 12] with regard to the parity
of ψ j,0(x) and ψ j,π/τ (x) about x = 0 and τ/2.

In this work we address four important questions on the properties of Bloch states and
WFs for a 1D crystal with an inversion centre at x = 0. First, ψ j,0(x) and ψ j,π/τ (x) have
definite parity about x = 0. Does the parity of ψ j,0(x) alternate between even and odd as
j increases? What about the parity of ψ j,π/τ (x)? It should be noted that an alternation of
parities has been claimed for the Kronig–Penney (KP) model [7] and has been expected for
conduction envelope functions in SLs [10]. Second, NMGs are known to be relevant in the
study of transport and optical phenomena in SLs [13, 14]. How do we determine the system
parameters leading to NMGs? Third,ψk(x) has no definite parity for 0 < k < π/τ in general,
and its degree of parity mixing has been studied [15]. How do we determine the effective
parity of ψ j,k(x)? Fourth, may we establish a direct procedure to obtain WKFs?

We show that the parity of ψ j,0(x) does not alternate with increasing j , neither in general
nor for the KP model. Instead, the parity sequence depends on the 1D crystal parameters.
The same thing applies to ψ j,π/τ (x). Equations leading to MB edges corresponding to a given
symmetry are set, thus allowing the classification of MBs and WKFs. We derive conditions on
NMGs, and show that minigap-edge BFs may swap their parities when the minigap vanishes
and reopens as crystal parameters are continuously varied. Hence, the lack of a general
sequence for the parity of ψ j,0(x) (or ψ j,π/τ (x)) is explained. We show that, depending on
the MB class, BKFs are obtained by choosing ψk(0), ψ ′

k(0), ψk(τ/2) or ψ ′
k(τ/2) as positive.

Then, an algorithm to obtain BKFs within the transfer matrix technique is given. We introduce
the effective parity of ψk(x) and discuss its main properties. Finally, the theory is applied to
the KP model and relevant clarifications on BKFs, WKFs and optical transitions in SLs are
made.

2. The Hamiltonian and transfer matrix

The 1D Hamiltonian is written as

Ĥ = − h̄2

2

d

dx

1

m∗(x)
d

dx
+ V (x), (2)

where V (x) and m∗(x) are the effective potential and the longitudinal effective mass
respectively. Such functions are supposed to be piecewise continuous, periodic (with period τ )
and even about x = 0. Hence, the Hamiltonian has point-symmetry centres at x = An = nτ
and x = Bn = nτ + τ/2, with n being an integer. In the following sections, the functions with
definite parity about An or Bn are denoted with a superscript e (even) or o (odd). For example,
Ao

n represents functions which are odd about An.
The transfer matrix T (E; x, x0) depends on the energy E and connects the points x0 and

x . It satisfies φ(x) = T (E; x, x0)φ(x0), where

φ(x) =
(
ψ(x)
ϕ(x)

)
=

(
ψ(x)

m0τψ
′(x)/m∗(x)

)
(3)
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is a continuous function [5], with m0 being the electron mass. This matrix may be written
as [16] T (E; x, x0) = �(x)�−1(x0), where

�(x) =
(
ψ1(x) ψ2(x)
ϕ1(x) ϕ2(x)

)
, (4)

with ψ1(x) and ψ2(x) being linearly independent eigenfunctions of Ĥ for the energy E .
Hence, the Wronskian W (x) = |�(x)| is independent of x , and consequently |T (E; x, x0)| =
W (x)/W (x0) = 1. It is also worth noting that T (E; x, x0) is a real and continuous function of
both x and x0, and that a nontrivial solution φ(x) does not vanish anywhere, since φ(x0) = 0
leads to φ(x) ≡ 0.

In particular, when x = x0 is an inversion centre of the crystal (an An or Bn point for the
Hamiltonian (2)), the functions ψ1(x) and ψ2(x) may be conveniently chosen to satisfy [2]

�(x0) =
(

1 0
0 1

)
. (5)

Hence, T (E; x, x0) = �(x) and ψ1(x) [ψ2(x)] is even [odd] about x = x0.

3. Minibands and minigaps

The transfer matrix technique is suitable to deal with Bloch states in one dimension [16]. In
fact, the dispersion relation E j,k may be found as the j th root of

cos(kτ ) = µ(E) ≡ 1
2 Tr(M(E)), (6)

with M(E) = T (E; τ/2,−τ/2), since φk(τ/2) = M(E)φk(−τ/2) and

φk(τ/2) = exp(ikτ )φk(−τ/2). (7)

Equation (6) indicates that one may limit the analysis to 0 � k � π/τ , since E j,−k = E j,k =
E j,k+2π/τ , and that µ(E) determines the band structure. In fact [2], the function µ(E) is
analytic, tends to +∞ as E → −∞, and oscillates as energy increases with local minima
(maxima) which are never greater (less) than −1 (1). Hence, the band structure consists of
an infinite sequence of minibands separated by minigaps, with edge states at k = 0 and π/τ
(� and X points of the Brillouin zone, respectively).

Due to the inversion symmetry of the 1D crystal, we consider Bloch states with definite
parity about x = 0. Such functions correspond to [15] k = 0 and π/τ , as derives from
equation (7) and the condition φk(τ/2) �= 0. In fact, an Ae

0 BF satisfies(
ψk(τ/2)
ϕk(τ/2)

)
= exp(ikτ )

(
ψk(τ/2)
−ϕk(τ/2)

)
, (8)

which leads to k = 0 andϕk(τ/2) = 0 (k = π/τ andψk(τ/2) = 0) ifψk(τ/2) �= 0 [ϕk(τ/2) �=
0]. The situation is similar for Ao

0 BFs. Furthermore, ψ0(x) [ψπ/τ (x)] has the same parity
[opposite parities] about A0 and B0. Thus, there are four types of edge states: each ψ0(x) has
�1 (Ae

0 and Be
0) or �2 (Ao

0 and Bo
0 ) symmetry and each ψπ/τ (x) has X1 (Ae

0 and Bo
0 ) or X2 (Ao

0
and Be

0) symmetry.
With this classification, equations for the energy of edge states derive from

φk(τ/2) = S(E)φk(0) (9)

and φk(0) �= 0, where S(E) = T (E; τ/2, 0). Namely, a �1 state fulfils(
ψ0(τ/2)

0

)
=

(
S11 S12

S21 S22

) (
ψ0(0)

0

)
, (10)
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thus leading to S21 = 0. In this way, equations

S21(E) = 0, S12(E) = 0, S11(E) = 0 and S22(E) = 0, (11)

hold, for �1, �2, X1 and X2 states respectively.
The matrix S(E) may also be used to obtain a whole MB, because it is closely related to

M(E). In fact, due to symmetry,

R(E) = T (E; −τ/2, 0) =
(

S11 −S12

−S21 S22

)
, (12)

and the relation is

M(E) = S(E)R−1(E) =
(

S11 S22 + S21 S12 2S11 S12

2S22 S21 S11 S22 + S21 S12

)
. (13)

Moreover, equation (6) leads to

µ(E) = S11S22 + S21 S12 = 1 + 2S21 S12 = 2S11S22 − 1, (14)

since |S(E)| = S11 S22 − S21 S12 = 1. Thus, as a generalization of previous approaches to the
KP model [17–19], the secular equation (6) may be rewritten as

cos2(kτ/2) = S11 S22 or sin2(kτ/2) = −S21 S12. (15)

Furthermore, allowed states fulfil

sin2(kτ ) = −4S11(Ek)S12(Ek)S22(Ek)S21(Ek) = −M12(Ek)M21(Ek), (16)

which comes from equations (13) and (15), but derives from (6), (13) and |M(E)| = 1 as well.
From equation (6) and the properties of µ(E), the edge states occur at k-values in the

period-four sequence [2] (�,X,X, �, �,X,X, �, . . .) as energy increases. Here, the 2 j − 1
and 2 j (2 j and 2 j + 1) elements give the edges of the j th MB (minigap). In particular, the
first element corresponds to the lower edge of the first MB. This state has �1 symmetry, since
the ground state has no nodes. However, the parity of other edge BFs is not known a priori.
In other words, edge states of a finite minigap at � (X) have opposite parities but, in general,
the symmetry of the lower one may be either �1 or �2 (X1 or X2). Thus, according to the
parity, the following four classes of simple MB are considered [2]: �1–X1, �2–X2, �1–X2 and
�2–X1.

A null minigap may occur for k = 0 or π/τ at a degenerate energy E satisfying [2]
µ(E) = ±1 and µ′(E) = 0. Since two linearly independent states with opposite parities are
allowed for such an energy, the conditions for an NMG read

S21(E) = S12(E) = 0 and S11(E) = S22(E) = 0 (17)

for � and X respectively.

4. Bloch–Kohn functions

4.1. Phase choice

As pointed out above, the complex phase of BFs should be appropriately chosen to give WKFs.
Hence, BFs are considered as analytic functions of k satisfying (a) periodicity in the reciprocal
space [20] ψk+2π/τ (x) = ψk(x), (b) ψ−k(x) = ψ∗

k (x), which guarantees the WFs to be real,
and (c) a symmetry condition which depends on the MB class. Namely [12], a �1–X1, �2–X2,
�1–X2 or �2–X1 MB requires ψ−k(x) = ψk(−x), ψ−k(x) = −ψk(−x), ψ−k(x) = ψk(τ − x)
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Table 1. Phase choice for BKFs ψk(x) of each MB class, with αk = i sin(kτ )/2 and
βk = π h̄2µ′(Ek)/(m0τ

2). The symmetry of the corresponding WKFs w(x) is also given.

MB ψk(0) ϕk(0) w(x)

�1–X1 (−S12S22/βk )
1/2 αkψk(0)/(S12S22) Ae

0

�2–X2 αkϕk(0)/(S21S11) (S21S11/βk )
1/2 Ao

0

MB ψk(τ/2) ϕk(τ/2) w(x)

�1–X2 (−S11S12/βk )
1/2 αkψk(τ/2)/(S11S12) Be

0

�2–X1 αkϕk(τ/2)/(S22S21) (S22S21/βk )
1/2 Bo

0

or ψ−k(x) = −ψk(τ − x) respectively. Correspondingly,ψk(0), ϕk(0), ψk(τ/2) or ϕk(τ/2) is
chosen as positive for all k, and is determined from the normalization condition [2]∫ τ/2

−τ/2
|ψk(x)|2 dx = h̄2µ′(Ek)

2m0τ
Nk = τ

2π
, (18)

with

Nk = − |ψk(0)|2
S12(Ek)S22(Ek)

. (19)

In fact, as equation (7) may be rewritten as

S(Ek)φk(0) = exp(ikτ )R(Ek)φk(0), (20)

one obtains

R−1(Ek)S(Ek)φk(0) =
(

cos(kτ ) 2S12 S22

2S21S11 cos(kτ )

)
φk(0) = exp(ikτ )φk(0), (21)

and

ψk(0) = i sin(kτ )

2S21(Ek)S11(Ek)
ϕk(0). (22)

Moreover, equations (9), (15) and (22) lead to

ψk(τ/2) = S11ψk(0) + S12ϕk(0) = i sin(kτ/2) exp(ikτ/2)

S21(Ek)
ϕk(0), (23)

then

ψk(0) = cos(kτ/2) exp(−ikτ/2)

S11(Ek)
ψk(τ/2). (24)

Similarly, one obtains

ψk(0) = i sin(kτ/2) exp(−ikτ/2)

S21(Ek)
ϕk(τ/2). (25)

Hence, equations (15), (16), (19), (22), (24) and (25) lead to

Nk = |ϕk(0)|2
S21(Ek)S11(Ek)

= − |ψk(τ/2)|2
S11(Ek)S12(Ek)

= |ϕk(τ/2)|2
S22(Ek)S21(Ek)

. (26)

Accordingly, table 1 displays the phase choice for the different MB classes, and allows a
direct calculation of normalized BKFs by the transfer matrix technique. Then, WKFs may be
obtained by equation (1).

To illustrate the relevance of the present phase choice, we consider the WFs of a ‘diatomic’
SL. Although such states have been studied in some detail [9], the phase of Bloch states has



6706 A Bruno-Alfonso and G-Q Hai

been chosen in a way (see equation (15) of [9]) that does not always lead to exponentially
localized Wannier states (see top panels in figures 4 and 5 of [9]). In particular, the first-
MB WF, which is associated with the ‘ground molecular orbital’, is centred at the origin and
poorly localized when the ‘intermolecular’ barriers are thinner than the ‘intramolecular’ ones.
Unexpectedly, this result has been interpreted as due to a single-atom regime [9]. Indeed, such
a configuration corresponds to another ‘dimer lattice’, where the ‘molecules’ are separated by
the wider barriers, and hence the corresponding first-MB WKF should not be centred at the
origin.

4.2. Symmetry

Due to the phase choice above, the real and imaginary parts of BKFs have opposite parities [21].
In particular, Re(ψk) is of Ae

0, Ao
0, Be

0 or Bo
0 type for a �1–X1, �2–X2, �1–X2 or �2–X1 MB

respectively. Consequently, BKFs have mixed parities in general [15]. The effective parity of
ψk(x) about x = x0 with radius nτ + τ/2 is given by the scalar product

P(n)
k (x0) = 2π

(2n + 1)τ

∫ nτ+τ/2

−nτ−τ/2
ψ∗

k (x0 + x)ψk(x0 − x) dx = fn(k)P
(0)
k (x0), (27)

where

fn(k) =



1, for integer kτ/π
sin((2n + 1)kτ )

(2n + 1) sin(kτ )
, otherwise.

(28)

Note that P(n)
k (x0) equals 1 (−1) if ψk(x) is even (odd) about x = x0, and lies between

−1 and 1 otherwise. Of course, this effective parity is independent of the phase choice and
gives local information which, due to fn(k), is independent of the radius in special cases only.
Furthermore, according to the linear dependence of ψk(x), ψ∗

−k(x) and ψk+2π/τ (x), it follows

that P(n)
k (x0) = P(n)

−k (x0) = P(n)
k+2π/τ (x0).

5. Wannier–Kohn functions

5.1. Symmetry

The symmetry conditions associated with the phase choice above determine the symmetry of
WKFs. In fact, according to equation (1), ψ−k(x) = ±ψk(−x) and ψ−k(x) = ±ψk(τ − x)
lead to w(−x) = ±w(x) and w(τ − x) = ±w(x) respectively [2]. Hence, the symmetry
centre of w(x), which may be found as

〈x〉 = 2π

τ

∫ +∞

−∞
x |w(x)|2 dx, (29)

equals A0 or B0. Moreover, w(x) is even (odd) about x = 0 for a �1–X1 (�2–X2) MB, and
is even (odd) about x = τ/2 for a �1–X2 (�2–X1) MB. Therefore, in agreement with table 1,
w(x − nτ ) may be classified as Ae

n , Ao
n , Be

n or Bo
n .

It is also worth noticing that the coordinate shift x → x + τ/2 leads to An → Bn

and Bn → An+1. Correspondingly, the symmetry X1 becomes X2 and vice versa. Thus,
the symmetry notations change with this shift, but the actual properties of BKFs and WKFs
remain the same. In particular, the symmetry centres of the WKFs for a given MB, which are
the Wyckoff positions [4], are independent of the coordinate system.
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Figure 1. A few periods of the effective potential and mass profiles of the KP model for the SLs
under investigation.

5.2. Localization

As stated above, WKFs are exponentially localized. In fact, the coefficient of such a decay for
the j th MB is found as [2]

h̄ j =
{

h1, if j = 1

min(h j , h j−1), if j > 1,
(30)

where

h j = 1

τ
ln

(
|µ(E j)| +

√
µ2(E j)− 1

)
, (31)

with E j being the j th zero of dµ/dE . Moreover, the decay of WKFs has been shown to be
faster than pure exponential, as due to a power-law prefactor [3]. In fact, w j(x) presents an
oscillatory behaviour which is modulated by the function

v j (x) = |x − 〈x〉 j |−3/4 exp(−h̄ j |x − 〈x〉 j |). (32)

Note that the term 〈x〉 j , as given by equation (29), allows v j (x) to have the same symmetry
centre as w j(x).

6. Kronig–Penney model

6.1. Theory

The KP model has been successfully used to study electron states within the effective-mass
approximation in periodic a–b SLs [5, 13], where a and b represent layers of widths da and db.
The period of such SLs is τ = da + db, and the origin of coordinates is conveniently chosen
at the midpoint of an a-layer. Hence, a 1D problem along the SL growth direction (x-axis), as
described by equation (2), is obtained for each in-plane wavenumber 	q . As shown in figure 1,
V (x) is V ∗

a = Va + h̄2q2/(2m ′
a) [V ∗

b = Vb + h̄2q2/(2m ′
b)] for |x | � da/2 [da/2 < |x | < τ/2],

where Va and Vb give the conduction-band bottom energies in layers a and b respectively.
Moreover, ma and mb (m ′

a and m ′
b) are the corresponding longitudinal (in-plane) effective-

mass values. Therefore, the matrix S(E) = T (E; τ/2, da/2)T (E; da/2, 0) may be easily
derived as

S(E) =
(

cacb − mbka
makb

sasb
1

m0τ
(ma

ka
cbsa + mb

kb
casb)

−m0τ (
ka
ma

cbsa + kb
mb

casb) cacb − makb
mbka

sasb

)
, (33)
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where cr = cos(kr dr/2), sr = sin(kr dr/2) and kr = (2mr (E − V ∗
r )/h̄

2)1/2, with r being a or
b. Furthermore, equation (14) leads to the well-known expression [5]

µ(E) = cos(kada) cos(kbdb)− 1

2

(
mbka

makb
+

makb

mbka

)
sin(kada) sin(kbdb). (34)

Hence, an NMG requires

2(V ∗
b − V ∗

a )

π2h̄2 = n2
a

mad2
a

− n2
b

mbd2
b

(35)

or

2(V ∗
b − V ∗

a )

π2h̄2 = (ma − mb)p2

(mada + mbdb)2
, (36)

where na, nb and p are nonnegative integers. In fact, according to equations (17) and (33), an
NMG at X leads to a linear system of equations for the variables cacb and sasb, with determinant
mbka/(makb)− makb/(mbka). A nonvanishing determinant leads to (35), whereas (36) holds
otherwise. The same reasoning applies to the � point, but NMGs at � (X) occur for even (odd)
values of na − nb and p.

When kada = naπ and kbdb = nbπ the equation (35) applies, and an NMG occurs due to
hybridization of separate layer resonances [14], which is herein called a type-I degeneration.
Otherwise, the occurrence of an NMG should be due to a type-II degeneration, which requires
ka = pπma/(mada + mbdb), kb = pπmb/(mada + mbdb) and equation (36). This second type
of NMG is due the position dependence of the longitudinal effective mass [19] and, according
to equation (36), requires (V ∗

b − V ∗
a )(ma − mb) � 0. Moreover, both types of degeneration

require ka and kb to be real, hence NMGs are allowed for energies above the barrier height
max(V ∗

a , V ∗
b ) only [17].

6.2. Numerical results

To fix ideas, conduction states with in-plane momentum q = 0 in Al0.48In0.52As–Ga0.47In0.52As
SLs are considered [14]. Such systems are herein labelled as SL1, and their parameters are
ma = 0.043 m0, mb = 0.070 m0, Va = 0 eV, Vb = 0.51 eV, db = 88.0 Å and da (to be varied).

The lower four MBs and minigaps are plotted as functions of da in figure 2, where the
edge energies are solutions of equations (11) and correspond to Bloch states with �1, �2,
X1 or X2 symmetry. At first sight, the most apparent characteristics of the spectrum are the
existence of NMGs and the corresponding serrated edges of MBs. Such NMGs are explained
as type-I degenerations at E = Vb + h̄2π2n2

b/(2mbd2
b ), since q = 0, Vb > Va and ma < mb

contradict equation (36). In fact, as displayed in figure 2, the first minigap (at X) is everywhere
finite, while the second (at �) vanishes for da = 38.9 Å (with na = nb = 1). Also, the third
minigap (at X) closes for da = 33.3 Å (with na = 1 and nb = 2) and da = 77.7 Å (with
na = 2 and nb = 1). It is very interesting to note that the minigap edge states interchange their
parities when the minigaps vanish and reopen as the da increases. Such behaviour is of most
importance in optical studies, as discussed below. Hence, we emphasize that, in clear contrast
with a previous work [7], the parity of edge states does not alternate in general, neither at �
nor at X.

The symmetry of WKFs may be determined by inspection of figure 2. Namely, the
symmetry of edge states is indicated by the different line styles, and the symmetry of WKFs is
given in table 1 for each MB class. For instance,w1(x) is Ae

0 for all da because the bottom (top)
state of the first MB is �1 (X1) everywhere. In the same way,w2(x) is Be

0 for da < 38.9 Å and
Ao

0 for da > 38.9 Å, whereas w3(x), which is Bo
0 for da < 33.3 Å, changes its symmetry as
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Figure 2. The lower four MBs and minigaps for SL1 as functions of the layer width da . Solid,
dotted, dashed and dotted–dashed curves represent �1, �2, X1 and X2 edge states respectively. The
shaded regions correspond to MBs.

da increases. In fact, w3(x) becomes Ao
0 (Be

0) after da = 33.3 Å (da = 38.9 Å), and is Ae
0 for

da > 77.7 Å.
It is also interesting to consider the symmetry ofw j(x) for j = 1, . . . , 4. On the one hand,

the symmetries are Ae
0, Ao

0, Ae
0 and Ao

0 for da > 116.6 Å, because in the tight-binding regime
the four MBs lie below the barrier, where the parities of BFs alternate. On the other hand, the
symmetries are Ae

0, Be
0, Bo

0 and Be
0 for da < 27.8 Å, since this regime resembles the negative

Dirac-comb potential [11]. Moreover, other sequences of symmetry occur for intermediate
regimes. In particular, the parities are Ae

0, Ao
0, Be

0, Ae
0 when 66.6 Å < da < 77.7 Å. Hence,

the prediction about WKFs of continuum MBs, in the sense that they would be centred at
the barrier midpoint [11], is not accurate. In fact, the function w4(x), which corresponds to
energies above Vb = 0.51 eV, is even about the well midpoint.

For a more detailed analysis of Bloch and Wannier states we now consider the system
SL1 with da = 50.0 Å. The lower four MBs are shown in figure 3, where the symmetry
of edge states is indicated. Hence, the first and second (third and fourth) MBs are below
(above) the barrier, and are classified as �1–X1 and �2–X2 (�1–X2 and �2–X1), respectively.
This classification may be confirmed in figure 4, where the effective parity of BKFs about
the symmetry centres A0 and B0 is plotted as a function of the wavenumber k. To do so, one
should remember that P(0)

k (x0) is 1 (−1) when ψk(x) is even (odd) about x = x0. Moreover,
figure 4 clearly shows that ψ0(x) [ψπ/τ (x)] has the same parity [opposite parities] about A0

and B0.
The WKFs for the same four MBs are plotted in figure 5, where the expected symmetries

are clearly shown. Namely, the parities are Ae
0, Ao

0, Be
0 and Bo

0 for j = 1, . . . , 4, in agreement
with table 1 and the classification of MBs in figure 3. Moreover, the localized nature of WKFs
is apparent in figure 5, but its exponential character [2] is better shown in figure 6, where the
overall linear behaviour of ln |w j (x)| (grey dots) represents the exponential decay of w j(x).
As given by equation (31), the approximate slopes in figures 6(a)–(d) are 6.34, 1.57, 0.90,
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Figure 3. Dispersion relations of the lower four MBs for SL1 with da = 50.0 Å. The symmetry of
edge states is indicated as �1, �2, X1 or X2, and the dashed line corresponds to the barrier height.
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Figure 4. Effective parity P(0)j,k (x0) of BFs about x0 = 0 (solid curve) and x0 = τ/2 (dashed curve)

as a function of the wavenumber k, for SL1 with da = 50.0 Å. The parts (a)–(d) correspond to
MBs 1–4 respectively.

and 0.62 respectively. Furthermore, the modulating functions ln |v j (x)| (see equation (32))
are shown as thin solid curves in figure 6. This illustrates the expected decay of WKFs [3],
where the power-law prefactor may be seen as a slight curvature in the approximate linearity
of ln |v j (x)|.



Bloch–Kohn and Wannier–Kohn functions in one dimension 6711

w
1
(x

)

0.2

0.1

0.0

–0.1

–0.2
w

2
(x

)

0.2

0.1

0.0

–0.1

–0.2

w
4
(x

)

0.2

0.1

0.0

–0.1

–0.2

w
3
(x

)

0.2

0.1

0.0

–0.1

–0.2

x / τ

(a) (c)

(b) (d)

–3 –2 –1 0 1 2 3

x / τ
–3 –2 –1 0 1 2 3

x / τ
–3 –2 –1 0 1 2 3

x / τ
–3 –2 –1 0 1 2 3

Figure 5. The WKFs of the lower four MBs for SL1 with da = 50.0 Å. The dashed lines indicate
the symmetry centres.

(a) (c)

(d)(b)

x / τ
–10 –5 0 5 10

x / τ
–10 –5 0 5 10

x / τ
–10 –5 0 5 10

x / τ
–10 –5 0 5 10

0

–10

–20

1
ln

 |w
 (

x)
|

0

–10

–20

3

0

–10

–20

4
ln

 |w
 (

x)
|

ln
 |w

 (
x)

|

0

–10

–20

2
ln

 |w
 (

x)
|

Figure 6. Natural logarithm of the WKFs (grey dots) and their modulating functions (thin solid
curve) for the lower four MBs in SL1 with da = 50.0 Å.

6.3. Optical absorption

The occurrence of NMGs and parity swaps is relevant in optical studies of SLs. Namely, for
light polarized along the SL axis, allowed intraband transitions occur between states with the
same wavenumber (k, 	q). However, due to symmetry, the vertical transitions between states
of the same parity are forbidden. Moreover, although the finite width of MBs, where Bloch
states have mixed parities, suggests a broadening of transition peaks, the higher density of
states at the edge of MBs indicates that relevant peaks of absorption should be associated with
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Figure 7. (a) Photon energy as a function of the well width da for edge-to-edge 1 → j transitions
in SL1. Solid (dashed) curves represent allowed �1 → �2 and X1 → X2 (forbidden �1 → �1 and
X1 → X1) transitions. (b) Contour plot of the optical absorption coefficient for 1 → j transitions
with j = 2, 3, 4. The absorption values are represented in log scale and larger values are shown as
darker tones.

edge states, which have definite parity. Hence, one may expect a kind of selection rule for
such optical transitions.

In fact, intraband transitions in the SL1 system have been studied both theoretically and
experimentally [14]. Due to the low temperature (5 K), the optical absorption is mainly due
to 1 → j transitions. Regarding the symmetry of edge states, the relevant transitions should
be �1 → �2 or X1 → X2. Hence, the detected 1 → 3 transition near � for the SL1 with
da = 16.0 Å (see figure 1 in [14]) should be forbidden for da > 38.9 Å (see figure 2). At the
same time, the 1 → 2 transition near � should become allowed for da > 38.9 Å, as a result of
the parity swap between edge states (see figure 2).

In this sense, there is no general selection rule on the MB index j for direct optical
transitions involving edge states of continuum MBs in SLs [10]. Instead, one should expect
absorption peaks near the energy difference between states with opposite parities in figure 2.
In fact, figure 7(a) shows the photon energy as a function of the well width for edge-to-
edge 1 → j transitions. Solid (dashed) curves represent allowed �1 → �2 and X1 → X2

(forbidden �1 → �1 and X1 → X1) transitions. Moreover, figure 7(b) displays a contour plot
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of the optical absorption coefficient for 1 → j transitions with j = 2, 3, 4. In agreement
with the theoretical and experimental work [14], the absorption coefficient of SL1 at 5 K has
been computed for a conduction electron density of 5 × 1017 cm−3. However, the lifetime
broadening in Fermi’s golden rule is taken as 5 meV, to better show the absorption peaks.
Moreover, we have considered a parabolic model for the conduction band. The absorption
values are represented on a log scale and larger values are shown as darker tones in figure 7(b).

At first sight, the overall agreement between panels (a) and (b) of figure 7 is apparent.
Namely, the edges of the absorption bands in panel (b) are reproduced by the curves in panel (a).
However, noting the most interesting result requires a careful inspection. In fact, the absorption
peaks, which correspond to the darker edges of the absorption bands in panel (b), reproduce
the solid curves in figure 7(a), which correspond to allowed transitions. At the same time,
the dashed curves in panel (a), which represent forbidden transitions, reproduce the weaker
edges of absorption bands in figure 7(b). Furthermore, the second and third absorption bands
in panel (b) do not appear at well-width values for which both edges of the band correspond
to forbidden transitions in panel (a).

6.4. Further results on null minigaps

Although the NMGs in SL1 are due to separate layer resonances, type-II degenerations
also occur in SLs. In fact, conduction states with q = 0 have been studied in
50 Å-In0.69Ga0.31As/50 Å-InP nearly effective-mass SLs [8]. The first minigap was calculated
as a function of Va for ma = 0.034 m0, mb = 0.073 m0, Vb = 0 eV, and it was found to vanish
at Va ≈ 51 meV. However, the zero-energy minigap was not successfully explained [8], since
equation (5) of [8] is equivalent to equation (35) here. Actually, such an NMG corresponds to
p = 1 in equation (36).

7. Conclusions

Bloch and Wannier functions in a 1D crystal with inversion symmetry have been considered.
First, we have shown that, in general, the parity of Bloch states does not alternate as energy
increases, neither at � nor at X. Unfortunately, this aspect has been incorrectly treated in
the literature [7], maybe because localized and below-barrier states present the alternating
sequence of parities. We have also set up equations for the edge levels associated with each
possible symmetry and have given conditions for the occurrence of NMGs. Such zero-energy
gaps and the associated interchanges of parity between edge states have been shown to be the
clue to explain the lack of a general alternating sequence of parities. Also, the relation between
the phase choice for Bloch states and the symmetry of WFs has been given. Moreover, we
have introduced a concept of effective parity of Bloch states which is helpful in optical studies,
for instance.

Additionally, we may set up a direct procedure to obtain WKFs. First, the MBs are
classified according to the symmetry of their edge states. The classification of the lower J
MBs follows three stages:

(i) find the lower 1 + [J/2], [J/2], [(J + 1)/2] and [(J + 1)/2] zeros of S21(E), S12(E),
S11(E) and S22(E) respectively3;

(ii) sort the corresponding symmetries �1, �2, X1 and X2 as energy increases and drop the
last term;

(iii) associate neighbour terms into pairs and get the desired classes.

3 Here [x] represents the larger integer which is not larger than x .
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Next, the dispersion relations E j,k are found in the energy ranges supplied by the classification
procedure for a k-mesh with 0 � k � π/τ . Last, the normalized Bloch states are obtained
from table 1 by the transfer matrix technique, and the WFs are calculated through equation (1)
by numerical integration. Of course, this procedure applies whenever NMGs do not occur,
thus leading to a set of simple MBs [2].

We have applied the developed theory to the KP model. Explicit conditions for NMGs
have been derived. In this sense, it is important to stress that two types of degeneration were
found. The first type is well known and consists of separate layer resonances [14], while the
second has been previously considered for effective-mass SLs only [19]. In particular, we
have identified type-II degenerations in nearly effective-mass SLs [8]. Furthermore, we have
discussed the effects of NMGs and parity swaps on the optical properties of semiconductor
SLs. In this respect, we have found that no general selection rule applies to the MB index j
for intraband transitions between edge states.

Finally, we expect our theory to clarify various aspects of the subject, and to be useful in
the study of systems such as compound-period SLs [9, 13]. Applications of this approach to
the calculation of localized states in SLs, the study of additional 1D models and extensions to
noncentrosymmetric crystals and composite MBs are in progress.
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